
ZKSwap: a Layer-2 Token Swap Protocol based
on ZK-Rollup

L2 Lab

dev@l2lab.org

September 22, 2020

1 Introduction

Since 2019, the blockchain industry has undergone breathtaking changes. De-
centralized finance – DeFi – continues to grow at an exponential rate. The Total
Value Locked in different DeFi protocols has exceeded 10 billion U.S. dollars.
With the continuous development of numerous on-chain assets and off-chain as-
sets going on-chain, we believe that the Total Value Locked in DeFi protocols
will soon exceed 100 billion U.S. dollars. These on-chain assets require fast, fric-
tionless, trust-free, and real-time exchange services, which has led to the rise of
new decentralized exchange(DEX) protocols such as Uniswap[1].

Although the new DEX model spearheaded by Uniswap has achieved sig-
nificant development, it still has obvious drawbacks. First, the high gas fee of
dozens of dollars per transaction hinders new users to entry; second, every trans-
action and every execution needs to wait for at least one block to confirm, which
gives an unsatisfactory experience; and third, subject to the limiting TPS of
Ethereum, Uniswap has a clear bottleneck in transaction numbers and transac-
tion capacity per second. Those drawbacks are not unique on Uniswap. They
are common issues faced by all DEXes.

ZK-Rollup[2] is a new type of Layer-2 scalability solution. Compared with
other Layer-2 scalability solutions such as Plasma, ZK-Rollup has considerable
advantages in terms of security, cost, TPS, and usability. It is especially suitable
for building a Layer-2 decentralized exchange.

ZKSwap (a ZK-Rollups based Swap protocol) is a brand-new exchange proto-
col based on ZK-Rollups technology. Through Zk-Rollups technology, all ERC20
tokens are transferred to Layer2, and the consistent state of Layer1 and Layer2
is guaranteed based on continuously generated zero-knowledge proofs. This so-
lution allows all exchanges to execute on Layer 2, achieving real-time swap with
zero gas fees, unlimited scalability, removing the constraint from the Ethereum’s
TPS, and block confirmation time. The user no longer has to wait for the one-
block confirmation time for each transaction. ZKSwap enables a DEX to provide
the smooth user experience of a centralized exchange(CEX) while allowing the
users to have full custody over their funds. We believe that ZKSwap is the future
form of trading. It will trigger a significant evolution of all existing DEX and
CEX.



At present, the ZKSwap team has finished most of the development work.
We will release the ZKSwap exchange protocol in early October. In the future,
we will promote the DEX exchange standard on Layer-2, so that all existing
DEXes can seamlessly access and use the ZKSwap exchange protocol.

2 Technical Overview

2.1 Uniswap V1

Uniswap[3] is an automated liquidity protocol powered by a constant product
formula and implemented in a system of non-upgradeable smart contracts on the
Ethereum blockchain. Users can create a liquidity pool by providing a certain
percentage of ETH and any other ERC20 asset. One liquidity pool reserves
ERC20 tokens and provides liquidity for the transactions between these two
assets. In return, all liquidity providers will split the 0.3% of the transaction
volume as a liquidity provider fee. In Uniswap, the first liquidity provider needs
to set the ratio of the two assets in the liquidity pool. The automated market
maker algorithm will ensure that the product of the two assets before and after
each transaction remains constant. The following is a brief introduction to the
basic key concepts of Uniswap to help users understand related concepts coming
up next.

Create a Liquidity Pool In Uniswap, each trading pair has only one liquidity
pool, which is generally created by the first liquidity provider. For example, a
liquidity provider creates an ETH-ZKS liquidity pool, and then adds liquidity.
The initial amount of ETH deposited is x0, the number of ZKS stored is y0, and
x0 ∗ y0 = c0. Here ZKS can be any ERC-20 token.

Liquidity Token Liquidity Provider (hereinafter referred to as LP) will obtain
the Liquidity Provider Token, (hereinafter referred to as LP Token or LT), which
is used to represent the share of LP in the current liquidity pool. LP Token is
an ERC-20 token that can be transferred without removing the liquidity of the
liquidity pool. Each liquidity pool has a corresponding LP Token.

The above-mentioned initial LP will receive n0 =
√
x0 ∗ y0−MIN_LIQUIDITY

number of LP Tokens. Among them, since the total amount of LP Token will
be used as the denominator in subsequent calculations, when adding liquidity
for the first time, the system will set MIN_LIQUIDITY , as the minimum re-
served amount of LP Token, send it to address 0x0 to prevent the total amount
of LP Token from becoming zero.

The following assumes that at any time i, there are xi ETH and yi ZKS in
the liquidity pool, their product constant is ci = xi ∗ yi, and the total amount
of LT issued is ni. Among them, i = 0, 1, 2,…

2



Create Liquidity When adding liquidity to an existing pool, users must deposit
pair tokens proportional to the current ratio. Suppose a new LP deposits X ETH
and Y ZKS to the liquidity pool, the LP must ensure that X/Y = xi/yi. The
LP will in turn receive the newly minted N = ni ∗X/xi number of LP Tokens.
After adding liquidity, the reserve of the liquidity pool will be xi+1 ∗ yi+1 =
(xi +X) ∗ (yi + Y ) = ci+1. The total amount of LP Token is ni+1 = ni +N .

Remove Liquidity LP can remove liquidity by burning their LT in the liquidity
pool contract to withdraw their share of ETH and ZKS tokens from the pool.
Assuming that the amount of LT burned by LP is N ′, the amount of ETH
that LP can withdraw is X ′ = xi ∗ N ′/ni, and the amount of ZKS tokens is
Y ′ = yi ∗N

′/ni. After the liquidity is removed, the reserve of the liquidity pool
will be updated to xi+1 ∗ yi+1 = (xi − X ′) ∗ (yi − Y ′) = ci+1. The total LT is
updated to ni+1 = ni − N ′. Please note that the reserves of the liquidity pool
might be different at the time when the LP deposits and when they withdraw,
therefore the number and the ratio of tokens the LP can withdraw might change
accordingly.

Swap Transaction After the liquidity pool is created and liquidity is injected,
users who hold ETH or ZKS can start swapping in the liquidity pool. Here we
use exchanging ETH for ZKS as an example. The user transfers m ETH to the
liquidity pool, and the ETH in the liquidity pool will become xi+1 = xi+m, and
the user, in turn, receives yi+1 ZKS tokens. According to the AMM algorithm
in Uniswap, after deducting the 0.003 ∗m fee, the remaining ZKS token amount
should be (xi+1−0.003m)∗yi+1 = xi∗yi. Therefore, the user will get yi+1 = (xi∗

yi)/(xi+1−0.003m) ZKS tokens. The liquidity provider fee will be automatically
added to the liquidity pool after the transaction reserve, so after the transaction,
the reserve of the entire liquidity pool becomes xi+1 ∗ yi+1 = ci+1 > ci. Since
there is no other LP Token minted or burned at the moment, the total amount of
LP Token remains unchanged, that is, ni+1 = ni. This means that the ratios of
all LPs remain the same, but each unit share now corresponds to more amount
of the liquidity pool reserve.

2.2 Uniswap V2

Uniswap V1 implements basic AMM exchange functions, but there were also
some issues. Since its contract is not upgradeable, in order to fix this problem,
the development team re-implemented Uniswap V2 [4], with basic functions the
same as Uniswap v1 and some new features including

– The users can directly create a trading pair of two ERC-20 tokens, instead
of using ETH as an intermediary in Uniswap V1;

– A more reasonable price oracle, using the randomness of the price of the
transaction before the first transaction in the block to make the price hard
to manipulate;

3



– Flash Swap, where users can obtain the target token first, and complete the
swap later; or they can return the tokens within a certain time, so as not
to trigger the swap process, which is equivalent to borrowing tokens in the
liquidity pool;

– The original 0.3% liquidity provider fee can be divided into two parts, of
which 0.25% is still used to split by liquidity providers proportional to their
contribution to liquidity reserves, and 0.05% is sent to the pre-set address
as the Protocol Fee, which can be used for different purposes;

These new features increase the usability of Uniswap. For the exchange func-
tionality, ZKSwap remains the same as Uniswap V2.

2.3 ZK-Rollup and zkSync
ZK-Rollups is a popular Layer 2 scalability solution. Its basic idea is to aggre-
gate a large number of transactions then verify the proof on-chain. ZK-Rollups
analyzes and verifies these aggregated transactions through smart contracts, and
uses zero-knowledge proof technology to put the proof of aggregate transactions
on-chain, thereby reducing the data that needs to be stored on-chain. All funds
are locked in the smart contract, and most of the calculations and storage are
done off-chain.

zkSync[5] is one implementation of ZK-Rollups, and its v1 version is currently
deployed on the Ethereum mainnet. Its basic working principle is as follows:

– The user submits the signed transaction to the Validator;
– The Validator rolls up multiple transactions they have received within a

period of time, merges them into one block, updates the root hash of the
contract state tree, and sends the SNARK proof corresponding to the state
update to the contract on-chain. This SNARK proof can prove that the new
state is indeed the series of trading results modified to the old state;

– In addition, the Validator will also send the state delta ฀ corresponding to
each transaction on-chain, which allows anyone to reconstruct the state after
each transaction;

– The above SNARK proof and the delta ฀ of the blockchain state both need to
be verified by the on-chain contract to prove the validity of all transactions
and the data availability;

Since the gas for SNARK proof is much less than the sum of gas to verify
a large number of individual transactions and storing the full state off-chain is
also much cheaper than storing it on-chain. Therefore, ZK-Rollup can theoret-
ically achieve 100 200 times more scalability than the Ethereum mainnet while
significantly reducing gas consumption.

The security of ZK-Rollup is almost the same as that of the corresponding
Layer 1, because:

– The Validator cannot tamper with the state, nor can it embezzle any Layer
2 funds, because all state changes need corresponding proof, which cannot
be forged; and the private key is always in the hands of the user.

4



– Since the delta ฀ of the blockchain state and related proofs are stored on-
chain, even if the Validator stops working, users can restore every transaction
and retrieve the locked Token from on-chain data;

– The user does not need to stay online because there is no need to store any
additional data.

zkSync currently supports three operations:

– Deposit: transfer Tokens on Layer 1 to zkSync Layer 2;
– Withdraw: withdraw Tokens from the account on Layer 2 and send it to the

account on Layer 1;
– Transfer: transfer Tokens on Layer 2 without the need for gas fees.

3 ZKSwap Decentralized Swap Protocol

This white paper implements a Layer 2 AMM decentralized transaction protocol
ZKSwap. Based on ZK-Rollup technology, ZKSwap executes the full function-
ality of Uniswap on Layer 2, while ensuring the core value of decentralized ex-
change, ZKSwap increases the TPS by multiple orders of magnitude compared
to Uniswap, and transaction processing hardly consumes any gas fees.

3.1 ZKSwap System Architecture

The ZKSwap system consists of on-chain smart contracts, off-chain ZKSwap
Server, the zero-knowledge proof system, and front-end user interface.

Fig. 1. System architecture

5



ZKSwap Smart Contract ZKSwap will deploy a series of smart contracts on
the Ethereum blockchain to store the tokens deposited by users while recording
and verifying Layer 2 status updates and related proof. Those smart contracts
are the key hub connecting on-chain and off-chain.

ZKSwap Layer 2 Server The ZKSwap server is the module that processes all
transactions off-chain. The ZKSwap server can use the WebSocket to interact
with the user, and monitor transactions on the Ethereum blockchain. All valid
transaction requests will be put into the ZKSwap mem pool and processed by
the Swap Engine. The transaction types in the mem pool are the same as the
transaction types of Uniswap. The Block Proposer will roll up the transactions
and generate a new block. The State Keeper will update the status of all to-
kens on Layer 2. The State Keeper will send the state to the Commiter, which
is responsible for communicating with the Prove Server, obtain the proof of
the corresponding transaction, and finally send the state and the corresponding
SNARK proof via Ethereum sender to the ZKSwap smart contract on-chain.

Plonk Zero-knowledge Proof System ZKSwap’s zero-knowledge proof sys-
tem adopts a distributed architecture and uses the latest zero-knowledge proof
algorithm PLONK[6] to generate proofs. The Prove Server supports multiple
Provers. Multiple Provers actively query the proof tasks in the Prove Server and
send them back to the Prover Server after generating the proof. PLONK’s global
trust setup only needs to be generated once, and the circuit can be greatly reused
within a certain range, reducing the threshold for using zero-knowledge proofs.

3.2 ZKSwap state tree

The status tree of the ZKSwap system records the balance of all accounts in
the current system. The state tree of ZKSwap is a Merkel tree with a height of
34. The child nodes of the Root are all account nodes (24 levels) in the system.
There are two types of account nodes:

– Ordinary account node: to record the status of all tokens in the account.
Ordinary account nodes can have any number of leaf nodes (10 levels), each
leaf node represents a type of token and its amount; there can’t be repeated
token types within one account.

– Pair account node: to record the status of the liquidity pool of a certain pair
of assets ZKSwap. The Pair Account Node contains only two leaf nodes.
Each leaf node represents the balance and type of one token in the liquidity
pool.

The transaction process in ZKSwap is essentially the process of updating the
state tree. The following section will be the introduction of all transaction types
in ZKSwap and their corresponding State changes.

6



Fig. 2. State

3.3 Deposit

Deposit refers to the process where users deposit Ethereum and ERC20 tokens
into the ZKSwap contract so that those tokens can be used on Layer 2. The
Deposit process is initiated by the user on-chain. When ZKSwap Server moni-
tors that the user transfers tokens to the ZKSwap smart contract, it will update
the Status Tree according to the transaction details. First, it will find the cor-
responding Account to which the transaction belongs, then update the status of
the corresponding Token under that Account based on the Deposited amount. If
there is no leaf node corresponding to the Token under this Account, then first
create the leaf node corresponding to the Token, and then update the status.
When the status of the leaf node is updated, the hash of the root node will be
updated accordingly.

The updated hash of the root node of the state tree, together with the
SNARK proof of the Deposit transaction, will be sent to the ZKSwap contract
on-chain.

3.4 Withdraw

Withdraw means that the user withdraws the Token from Layer 2, unlocks it
from the ZKSwap contract, and sends it to the corresponding Layer 1 account.
The Withdraw process is initiated by the user from Layer 2. When the ZKSwap

7



Fig. 3. Deposit

8



Fig. 4. Withdraw

9



Server receives the user’s withdrawal request, it will update the status of the
corresponding Token under the corresponding account, and send the updated
root node hash and the proof of the Withdraw process to the ZKSwap contract
on-chain. After the smart contract verifies it as valid, the contract will unlock
the corresponding Token and send it to the account on the corresponding chain.

3.5 Transfer

Fig. 5. Transfer

Transfer refers to the process where one user sends a certain token to another
user in ZKSwap Layer 2. The Transfer process is initiated by the user on Layer
2. When the ZKSwap Server receives the Transfer request, it will find the corre-
sponding sending and receiving accounts according to the request details. And it
will update the status of the Token under the accounts of the sender and receiver
according to the sent amount. The hash of the root node of the state tree will
be updated accordingly, and together with the SNARK proof corresponding to
the Transfer operation, be sent to the contract on the ZKSwap smart contract

10



on-chain. Transfer does not change the on-chain status of the token, because
the token is still locked in the ZKSwap contract and has not been transferred
on-chain.

3.6 Create Liquidity

Fig. 6. Create Liquidity

Create liquidity refers to the process where the user creates a liquidity pool
or adds liquidity to an existing pool on Layer 2. The definition remains the same
as that in Uniswap. Create Liquidity is initiated by the user on Layer 2. When
the ZKSwap Server receives the user’s request to create liquidity for a pair of
assets, it first needs to find the initiator’s Account and the Pair Account of the
pair of tokens (If the Pair Account does not exist, the user needs to create a Pair
liquidity pool first); then, transfer the two Tokens are calculated according to
the AMM algorithm. to the Pair Account proportionately; at the same time, the
system will calculate the number of LP Tokens the user will receive, and update
the corresponding LP Token status under the liquidity provider Account. After
all status updates are completed, the status tree root node hash will be sent to

11



the ZKSwap smart contract on-chain together with the proof of Create Liquidity.
The initial minted LP token will need to be done by the ZKSwap Contract to
deploy the corresponding LP Token contract on-chain.

3.7 Remove Liquidity

Fig. 7. Remove Liquidity

Remove Liquidity refers to the process where the user burns the LP Token
from a certain Pair liquidity pool on Layer 2 and withdraws the two tokens from
the pool reserve. Remove Liquidity is initiated by the user on Layer 2, when
ZKSwap Server receives a user’s Remove Liquidity request, it will first find the
corresponding Account and burn the corresponding amount of Liquidity Tokens;
then the two Tokens under the Pair Account corresponding to Liquidity Token
will be proportionately transferred to the Account which has just burned its
Liquidity Tokens. After the process is completed, the state tree will be updated
accordingly, and the root node hash and the proof of the corresponding Remove
Liquidity operation will be sent to the ZKSwap contract on-chain.

12



3.8 Swap

Fig. 8. Swap

Swap refers to the process where users complete transactions in the Layer 2
liquidity pools. Suppose the user needs to swap in the pool that contains TokenA
-TokenB Pair Token. The user first sends TokenA from his account on Layer 2
to the corresponding Pair Account. Then ZKSwap will calculate the number of
TokenB for the user according to the AMM algorithm and send it to the user.
The state tree is updated accordingly. The ZKSwap Server will update the root
node hash of the state tree. The hash and the swap proof will be sent to the
ZKSwap contract on-chain. Swap transactions will not change the status of the
token on-chain, because the token itself is still locked in the ZKSwap contract.

3.9 Withdraw Liquidity
Withdraw Liquidity refers to the process where the user withdraws the Liquidity
Token from the Layer 2 account to Layer 1. Withdraw Liquidity’s initiation pro-
cess and status update on Layer 2 are exactly the same as the above-mentioned

13



Fig. 9. Withdraw Liquidity

ordinary Withdraw, but it produces different results on Layer 1. After the ZK-
Swap contract receives the Withdraw Liquidity request, it will automatically
trigger Liquidity Token minting to mint additional Liquidity Tokens onLayer 1
and send it to the designated account.

4 Summary and Outlook

ZKSwap uses ZK-Rollup technology to realize the complete function of Uniswap
in Layer-2. It is a set of decentralized Layer-2 token AMM (Automated Market
Maker) Swap protocol, with infinite scalability and high TPS. Liquidity providers
and users do not need to pay high gas fees and always have real-time transactions.
Users no longer need to wait for block confirmations to complete transactions
on Layer 2, which dramatically reduces the threshold for using DEX and brings
significant changes to all current DEX and CEX.

ZKSwap is developed with the support of L2 Lab. In the future, L2 Lab will
continue to promote the development of the Layer 2 protocol layer, combining
a series of Layer 2 basic protocols such as ZKSwap and Layer 2 privacy stable
coins to create a complete Layer 2 DeFi ecosystem.

By creating a Layer-2 protocol standard with excellent user experience, L2
Lab is committed to promoting the paradigm shift in the blockchain industry,

14



making Layer 1 the foundation of clearing and settlement, and Layer 2 connecting
blockchain applications and Layer 3 bridges and entrances. We are committed
to promoting all blockchain applications to run in a layer-3 world without any
restrictions.

We will be committed to making ZKSwap the most useful product in DEX.
When the time is right, we will also launch a liquid mining plan, and DAO plans
to help the rise of distributed financial DeFi and lead the paradigm change of
blockchain applications.

References

1. Uniswap is a decentralized protocol for automated liquidity provision on ethereum.
https://https://uniswap.org/.

2. Alex Gluchowski. Zk rollup: scaling with zero-knowledge proofs. https://
pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.
pdf.

3. Uniswap v1. https://uniswap.org/docs/v1/.
4. Uniswap v2 github. https://github.com/Uniswap/uniswap-v2-core.
5. zksync is a fully trustless, secure, user-centric protocol for scaling payments and

smart contracts on ethereum. https://zksync.io/.
6. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations

over lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryp-
tology ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/
953.

15

https://https://uniswap.org/
https://pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf
https://pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf
https://pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf
https://uniswap.org/docs/v1/
https://github.com/Uniswap/uniswap-v2-core
https://zksync.io/
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953

	ZKSwap: a Layer-2 Token Swap Protocol based on ZK-Rollup

